Selective Synthesis of the Nonachlorononaborate Clusters B₉Cl₉ and B₉Cl₉²⁻

By RAIFAH M. KABBANI and Edward H. Wong*

(Department of Chemistry, Fordham University, Bronx, New York 10458)

Summary The redox relationship between dianionic and neutral boron clusters is demonstrated by the oxidation-chlorination of nonahydrononaborate (2-) with sulphuryl chloride to give the neutral nonachlorononaborate cluster, and its subsequent reduction back to the dianionic nonachlorononaborate(2-) species.

The redox reactions between the neutral and dianionic polyhedral boron hydrides and their derivatives can be represented by: $B_n X_n^{2-} \rightleftharpoons (B_n X_n^{-}) \rightleftharpoons B_n X_n$ (X = H, Cl, or Br; $6 \le n \le 12$). Although they may be possible in some cases,¹ there has as yet been no clear experimental verification of such interconversions. We report here a convenient and selective oxidative synthesis of the neutral B_9Cl_9 cluster using the oxidizing-chlorinating reagent SO_2Cl_2 , and demonstrate also its ready reduction to the $B_9Cl_9^{2-}$ species.

When 9 equiv. of SO_2Cl_2 is added under nitrogen to a methylene chloride solution of $[Bun_4N]_2[B_9H_9]$ at -78 °C, an instantaneous reaction is observed. Upon warming to room temperature, good yields of $[Bun_4N]_2[B_9Cl_9]$ can be isolated.[†] Addition of excess (20 equiv.) of reagent, however, afforded the neutral B_9Cl_9 cluster in 30—40% yield in addition to $B_9Cl_9^{2-}$. The neutral product is easily isolated by extraction with hexane or sublimation to give pure B_9Cl_9 without contamination from other perchlorinated boron clusters.[‡]

It has been established that increasing halogen substitution will correspondingly increase the oxidation potential of polyhedral borane dianions.² Under these conditions, we have found that neither $B_9Cl_9^{2-}$ nor $B_9Cl_8H^{2-}$ can be readily oxidized to the neutral product. It is reasonable to postulate the initial oxidation of dianions with low degrees of chlorination to give neutral $B_9Cl_2H_{9-x}$

[†] The [Bun₄N]₂[B₉Cl₉] salt was characterized by elemental analysis and spectral data.

 B_9Cl_9 was characterized by mass spectral and u.v., and i.r. data and is identical to that prepared by G. F. Lanthier and A. G. Massey, *J. Inorg. Nuclear Chem.*, 1970, 32, 1807.

species. These are then rapidly perchlorinated by excess of SO_2Cl_2 to form the B_9Cl_9 product (Scheme). The feasibility of the latter process is illustrated when we found that

SO₂Cl₂ does chlorinate B₉Cl₈H to give B₉Cl₉ under similar conditions.3

Based on current electron-counting rules,³ B₉Cl₉ is formally two electrons short of a closed-shell configuration and can thus be expected to undergo ready reductions to give $B_9Cl_9^{2-}$. This is realized when B_9Cl_9 is treated with a methylene chloride solution of Bun_4NI and the dianionic $B_9Cl_9^{2-}$ can be isolated in quantitative yields.

We gratefully acknowledge the financial assistance of the Petroleum Research Fund administered by the American Chemical Society.

(Received, 15th February 1978; Com. 158.)

- ¹ R. Hoffmann and W. N. Lipscomb, J. Chem. Phy., 1962, 37, 2872; E. L. Muetterties and W. H. Knoth, 'Polyhedral Boranes,' M. Dekker, New York, 1968, p. 43. ² W. H. Knoth, H. C. Miller, J. C. Sauer, J. H. Balthis, Y. T. Chia, and E. L. Muetterties, *Inorg. Chem.*, 1964, 3, 159.
- ³ B₉Cl₈H and B₉Cl₈H²⁻ were prepared by the method of J. A. Forstner, T. E. Haas, and E. L. Muetterties, Inorg. Chem., 1964, 3, 155. ⁴ K. Wade, Chem. Comm., 1971, 792; Inorg. Nuclear Chem. Letters, 1972, 8, 823.